
The Melnikov Grammar
Daniel Cardoso, dcardoso@mit.edu, Massachusetts Institute of Technology

Takehiko Nagakura, takehiko@mit.edu, Massachusetts Institute of Technology
77 Mass. Ave of. 9-266, Cambridge MA 02139. USA

Overview
This study emerges from the authors’ fascina-
tion with both the intriguing geometries of
Konstantin Melnikov’s designs and the com-
putational nature of his design process, in
which additions, subtractions and repetitions of
a basic shape in accordance to a set of trans-
formation rules configure a well-defined and
open-ended formal language. By extracting the
geometric rules of Melnikov’s architecture, and
defining a set of primitives for a language, the

computational aspects of Melnikov’s design
process are encoded in a program (Melnikov
Grammar), allowing for complexity and non-
deterministic “Melnikov” designs. The pro-
gram implements the rules to generate designs
in a semi-autonomous manner, and satisfying
certain user-defined constraints. The constraints
implemented so far include a) a site’s boundary,
b) collision avoidance, c) a series of pre-exis-
tences, and d) the adaptation of the elements to
maximize the views.

Figure 1. A design by Melnikov Grammar

Abstract
The Melnikov Grammar is presented. A computer program that playfully re-interprets an iconic work of
architecture by Konstantin Melnikov, implementing a rule-based system that semi-autonomously com-
putes unexpected “Melnikov” designs in a non-deterministic manner while satisfying certain architectural

constraints.

Keywords
Rule-based, Generative, Architecture, Melnikov, Shape Grammars

Background
Among the architects and artists of the second
decade of the twentieth century in Russia, Kon-
stantin Melnikov (1890-1974) stands prominent-
ly as one of its most intriguing an exceptional
characters. His works as an architect can not be
easily labeled as typical examples of the avant-
garde of the period, nor can be fully explained by
the formal principles of Russian constructivism.
A closer look to the elegant patterns visible in
some of his designs reveals instead the existence
of concrete and precise geometric principles at
play in his design methodology. Some key in-
stances of Melnikov’s architecture can be under-
stood in this light, in their own terms, as having
a particular generative logic. In other words, as a
consistent exploration of a set of simple formal
and geometric –as well as constructive- themes.
Perhaps the most important of Melnikov’s built
works is his own house (completed in 1929), a
three storey construction consisting of the inter-
section of two cylindrical towers decorated with
a pattern of hexagonal windows. The iconic pres-
ence of the house is very strong in part due to
the platonic purity of its volumes, reminiscent of
utopian projects such as Boullee’s Newton Ceno-
taph, or Ledoux’s Quarters for the rural caretak-
ers [1]. The spiral staircase that acts as a connec-
tor between the different levels is located exactly
at the intersection line between the two cylinders.
The division walls are almost invariably a result
of either radial lines (in the rooms) or of the pro-
jection of the missing wall of the cylinder (public
areas). Other feature is that one of the cylinders
has a flattened surface for a window, creating an

asymmetry that differentiates the public tower
from the private one, and affording the interior a
different quality of light.
The cilyndrical form is a recurrent theme in
Melnikov’s architecture since 1924; the designs
for the headquarters of the Leningrad Pravda in
Moscow, and the Archos company are examples
of this persistent trait. However, the generative
principle that resulted in the Melnikov house was
set in motion in the competition scheme for the
Zuev Club (a sequence of 5 cylinders). In subse-

Figure 2. Melnikov House.

quent designs, Melnikov extended his geometric
language of cylinders in his 1929 mass housing
competition schemes, in which the cylinders
were added not only in sequence, but also in
clusters of five towers to form “three-petalled”
plans that would later derive in the Burevestnik
Clum building [1]. Eventually, accusations of
formalism drove Melnikov out of the profession
and he ended his life as a portrait painter.

Rules
The elements and the rules are conceived as a
shape grammar, a conceptual and logical frame-
work developed by George Stiny, that provides
a solid formalism for describing and generating
designs through the specification of a set of ele-

Figure 3. Mass Housing Competition, 1924

ments and a set of rules for their transformation
[2].
The grammar takes the basic design principles
from Konstantin Melnikov’s house and turns
them into a set of explicit geometric rules. These
rules are implemented in a computer program
using the LISP programming language and NI-
TROS, a prototype software developed by Take-

hiko Nagakura that provides a shell environment
on which a description of formal elements and
transformational relationships can be plugged in.
NITROS imposes a rigorous framework to the
describable relationships between the elements,
which are typically described through parametric
constraints; in other words, the value of some
parameter of an element is computed from the
values of the parameters of another element.
Sorting out the constrained parameters and the
free parameters is a key component of knowl-
edge about a system of architectural types [3].
NITROS currently works as a plug-in for Auto-
CAD and is used mainly as a pedagogical tool.
A first group of rules accounts for the connec-
tions between the primitive types, and therefore
have morphological implications in the result-
ing ‘urbanism’ of the design. This group of rules
essentially implements the two geometric prin-
ciples of Melnikov’s Architecture: a) the gram-

Figure 5. Rules of Transformation

Figure 4. Some details to the primitive shapes

matical connections of cylinders divided in two
sections (180 degrees), and b) the grammatical
connections of cylinders divided in three sections
(120 degrees). The geometric elements of this
combination are defined by a scripted functions,
and each one can be transformed and combined
in a finite number of ways. These transforma-
tions typically substitute one element for another
one that in turn can be transformed in a finite
number of ways, allowing for emergent complex-
ities and unpredictability despite the simplicity of
the rules.
 A second group of rules is in charge of detail-
ing the shapes, adding windows, doors, and
staircases. A detail rule can be applied only as
a substitution of a basic shape that has no other
transformation available (i.e. cannot be substi-

tuted by another basic shape), and are dependent
on the view-finding constraint (see more details
in next section), which means that a shape that is
facing another shape at a very close distance is
not likely to have a large window. Conversely, if
the shape is facing an open space –like the site’s
boundary- a large window is likely to be placed.
On top of the combination logic of each com-
ponent, the logic of the application of the rules
determines what element to deploy in which
circumstances; the following section describes
in more detail the constraints that determine how
the Melnikov Grammar is deployed.

Constraints
The application of a particular shape transforma-
tion depends on its satisfaction of a number of

 Figure 6. Melnikov Grammar State Diagram

constraints. The constraints built-in the system
so-far are a) a collision constraint that is imple-
mented as a collision detection algorithm which
prevents a shape from being deployed –or substi-
tuted- on top of a previously deployed shape, b)
an optional radius constraint that prevents shapes
from being deployed outside a specified range,
c) an obstacle constraint that detects and avoids a
pre-specified object on site, d) a boundary con-
straint, that prevents the design to grow outside
a pre-defined boundary, and e) a view constraint,
that is meant to make sure that the kind of wall
that the right kind of window or wall is placed at
every element.
 The following code accounts for the basic
implementation of constraints a, c, and d.

(setq pop (point-in-polygon newX newY world_
points_list))
(setq flag 0)
(setq allObjects(nt_visible_literal_geometries))
(while allObjects
(setq this (car allObjects))
(setq this_pList (nt_plist this))
(setq thisType (nt_type this))
(if (= thisType “boxtacle”)
(progn
(setq thisX (nt_val “xo” this_pList))		
(setq thisY (nt_val “yo” this_pList))	
(setq thisZ (nt_val “zo” this_pList))
(setq thisPoint (list thisX thisY thisZ))	
(if (and

Figure 7. A derivation of the grammar constrained by a boundary.

(and (> newX (- thisX 30))
(< newX (+ thisX 30)))	
(and (> newY (- thisY 30))
(< newY (+ thisY 30)))
	 (= pop -1))
	 (setq flag 1)))
(progn					
(setq thisX (nt_val “xo” this_pList))	
(setq thisY (nt_val “yo” this_pList))	
(setq thisZ (nt_val “zo” this_pList))
(setq thisPoint (list thisX thisY thisZ))
(setq dis_current_to_new (distance thisPoint
newPoint))
(if (and (= pop -1) (< dis_current_to_new
15.1)
(not (and (eq original-x thisX) (eq original-y
thisY)))
(progn (setq flag 1)))))
(setq allObjects (cdr allObjects)))
(if (= pop 1)
(setq flag 1))
(if (= flag 0)
t nil)

By enforcing these constraints while assigning
transformations to a shape, the program is able
to autonomously deploy architectural Melnikov
shapes in 2d space. The state diagram in the pre-

Figure 8. A plan view of a “smart” Melnikov Design

vious page describes the different states and tran-
sitions of Melnikov Grammar. Before applying
a transformation, the program randomly decides
which valid shape to transform and takes deci-
sions based on the kind of shape chosen, and on
the satisfaction of the corresponding constraints.

Results
By including collision detection algorithms and
other constraints the Melnikov Grammar pro-
gram is able to autonomously deploy architec-
tural shapes in the virtual space, while following
basic functional and lighting principles. Images
in this page show some of the results of this
autonomous process with different sets of rules
and constraints. Work remains to be done in opti-
mizing the collision detection algorithms, which
cause the program to be very slow when a large
number of shapes has been placed.

Summary

We have presented Melnikov Grammar, a play-
ful computer program that implements a shape-
grammar or rule-based system to generate
architectural elements and urban morphologies
non-deterministically while satisfying certain
constraints like the boundary of a site, collision
avoidance, and optimal view-finding. The ele-
ments that compose the architecture are a result
of an exercise of appropriation and re-use in-
spired by Konstantin Melnikov’s architecture,
particularly by the Melnikov House built in
Moscow (1929). Examples of the autonomous, or
“smart” growth of Melnikov Designs by Mel-

nikov Grammar, a detailed explanation of the
computer program that implements the grammar,
and renderings of the resulting morphologies are
presented.

References
[1] Pallasmaa, Juhani and Andrei Gozak: 1996, The Melnikov House,
Academy Editions, Singapore.

[2] Stiny, G and Gips, J: 1978: Algorithmic Aesthetics: Computer Models
for Criticism and Design in Arts. University of California Press, Berkeley
and Los Angeles, California.

[3] Nagakura, Takehiko 2006, Advanced Topics in Design and Computa-
tion: Implementing a small Top-down Grammar. Unpublished.

[4] Stiny, George: 1980, Kindergarten Grammars: designing with
Froebel’s building gifts. Environment and planning B 7(4): 409-462.

Figure 9. A 3-D rendering of a Melnikov Design

